
Optimistic Loop Optimization
CGO 2017 – February 8th – Austin, TX

Johannes Doerfert and Sebastian Hack
Compiler Design Lab
Saarland University
http://compilers.cs.uni-saarland.de

Tobias Grosser
Department of Computer Science
ETH Zürich
https://spcl.inf.ethz.ch

http://compilers.cs.uni-saarland.de
https://spcl.inf.ethz.ch

Motivating Example

A Potentially Parallel Loop

for (i = 0; i < N; i++)
A[i] = A[N + i];

Read Set (R) Write Set (W)
{ A[N + i] | 0 ≤ i < N } { A[i] | 0 ≤ i < N }

{ A[(N + i) mod 256] | … }

R ∩ W = { } Parallel

2

A Potentially Parallel Loop

for (i = 0; i < N; i++)
A[i] = A[N + i];

Read Set (R) Write Set (W)
{ A[N + i] | 0 ≤ i < N } { A[i] | 0 ≤ i < N }

{ A[(N + i) mod 256] | … }

R ∩ W = { } Parallel

2

A Potentially Parallel Loop

for (i = 0; i < N; i++)
A[i] = A[N + i];

Read Set (R) Write Set (W)
{ A[N + i] | 0 ≤ i < N } { A[i] | 0 ≤ i < N }

{ A[(N + i) mod 256] | … }

R ∩ W = { }

Parallel

2

A Potentially Parallel Loop

for (i = 0; i < N; i++)
A[i] = A[N + i];

Read Set (R) Write Set (W)
{ A[N + i] | 0 ≤ i < N } { A[i] | 0 ≤ i < N }

{ A[(N + i) mod 256] | … }

R ∩ W = { } Parallel
2

A Potentially Parallel Loop

unsigned char i, N;

for (i = 0; i < N; i++)
A[i] = A[N + i];

Read Set (R) Write Set (W)
{ A[N + i] | 0 ≤ i < N } { A[i] | 0 ≤ i < N }

{ A[(N + i) mod 256] | … }

R ∩ W = { }, iff N <= 128 Potentially Sequential

2

A Potentially Parallel Loop

unsigned char i, N;

for (i = 0; i < N; i++)
A[i] = A[N + i];

Read Set (R) Write Set (W)
{ A[N + i] | 0 ≤ i < N } { A[i] | 0 ≤ i < N }

{ A[(N + i) mod 256] | … }

R ∩ W = { }, iff N <= 128 Potentially Sequential

2

A Potentially Parallel Loop

unsigned char i, N;

for (i = 0; i < N; i++)
A[i] = A[N + i];

Read Set (R) Write Set (W)
{ A[N + i] | 0 ≤ i < N } { A[i] | 0 ≤ i < N }

{ A[(N + i) mod 256] | … }

R ∩ W = { }, iff N <= 128 Potentially Sequential

2

A Potentially Parallel Loop

unsigned char i, N;

for (i = 0; i < N; i++)
A[i] = A[N + i];

Read Set (R) Write Set (W)
{ A[N + i] | 0 ≤ i < N } { A[i] | 0 ≤ i < N }

{ A[(N + i) mod 256] | … }

R ∩ W = { }, iff N <= 128

Potentially Sequential

2

A Potentially Parallel Loop

unsigned char i, N;

for (i = 0; i < N; i++)
A[i] = A[N + i];

Read Set (R) Write Set (W)
{ A[N + i] | 0 ≤ i < N } { A[i] | 0 ≤ i < N }

{ A[(N + i) mod 256] | … }

R ∩ W = { }, iff N <= 128 Potentially Sequential
2

Problem Statement

Problem Statement

Required:
Program abstractions that capture all possible semantics

Reality:
Corner cases are often missed or assumed not to happen

Consequence:
Poor applicability and miscompilations for certain inputs

Solution:
Take optimistic assumptions statically that are verified dynamically

3

Problem Statement

Required:
Program abstractions that capture all possible semantics

Reality:
Corner cases are often missed or assumed not to happen

Consequence:
Poor applicability and miscompilations for certain inputs

Solution:
Take optimistic assumptions statically that are verified dynamically

3

Problem Statement

Required:
Program abstractions that capture all possible semantics

Reality:
Corner cases are often missed or assumed not to happen

Consequence:
Poor applicability and miscompilations for certain inputs

Solution:
Take optimistic assumptions statically that are verified dynamically

3

Problem Statement

Required:
Program abstractions that capture all possible semantics

Reality:
Corner cases are often missed or assumed not to happen

Consequence:
Poor applicability and miscompilations for certain inputs

Solution:
Take optimistic assumptions statically that are verified dynamically

3

Solution

Optimistic Loop Optimization

4

Optimistic Loop Optimization

/* loop nest */

4

Optimistic Loop Optimization

1. Take Optimistic Assumptions to model the loop nest

/* loop nest */

4

Optimistic Loop Optimization

1. Take Optimistic Assumptions to model the loop nest
2. Optimize the loop nest

/* optimized loop nest */

/* loop nest */

4

Optimistic Loop Optimization

1. Take Optimistic Assumptions to model the loop nest
2. Optimize the loop nest
3. Version the code

if ()
/* optimized loop nest */

else
/* loop nest */

4

Optimistic Loop Optimization

1. Take Optimistic Assumptions to model the loop nest
2. Optimize the loop nest
3. Version the code
4. Create a simple runtime check

if (/* simple runtime check */)
/* optimized loop nest */

else
/* loop nest */

4

Semantic Differences

C LLVM-IR Polyhedral Model

5

Semantic Differences

C LLVM-IR Polyhedral Model
Variant Loads in Control Conditions

3 3 7

5

Semantic Differences

C LLVM-IR Polyhedral Model
Variant Loads in Control Conditions

3 3 7
Aliasing Arrays

3 3 7

5

Semantic Differences

C LLVM-IR Polyhedral Model
Variant Loads in Control Conditions

3 3 7
Aliasing Arrays

3 3 7
Integer Wrapping

3 3 7

5

Semantic Differences

C LLVM-IR Polyhedral Model
Variant Loads in Control Conditions

3 3 7
Aliasing Arrays

3 3 7
Integer Wrapping

3 3 7
Out-of-Bound Accesses

3 3 7

5

Semantic Differences

C LLVM-IR Polyhedral Model
Variant Loads in Control Conditions

3 3 7
Aliasing Arrays

3 3 7
Integer Wrapping

3 3 7
Out-of-Bound Accesses

3 3 7
Potentially Unbounded Loops

3 3 7

5

Real World Example

Real World Example

NAS Parallel Benchmark Suite – BT – compute_rhs
▶ 66 loops, nested up to depth 4
▶ 38 array writes, 294 array reads
▶ 45 reads in loop bounds

6

Real World Example

double rhs[JMAX][IMAX][5];

for (j = 0; j < grid [0] + 1; j++)

for (i = 0; i < grid [1] + 1; i++)
for (m = 0; m < 5; m++)

rhs[j][i][m] = /* ... */;

(a) Loads in control and access functions are invariant

(b) No aliasing/overlapping arrays

6

Assumption Generation

double rhs[JMAX][IMAX][5];

for (j = 0; j < grid [0] + 1; j++)

for (i = 0; i < grid [1] + 1; i++)
for (m = 0; m < 5; m++)

rhs[j][i][m] = /* ... */;

(a) Loads in control and access functions are invariant

(b) No aliasing/overlapping arrays

6

Assumption Generation

double rhs[JMAX][IMAX][5];

for (j = 0; j < grid [0] + 1; j++)

for (i = 0; i < grid [1] + 1; i++)
for (m = 0; m < 5; m++)

rhs[j][i][m] = /* ... */;

(a) Loads in control and access functions are invariant
(b) No aliasing/overlapping arrays 6

Assumption Generation

double rhs[JMAX][IMAX][5];

for (j = 0; j < grid [0] + 1; j++)

for (i = 0; i < grid [1] + 1; i++)
for (m = 0; m < 5; m++)

assume &rhs[j][i][m] >= &grid [2] ||
assume &rhs[j][i][m + 1] <= &grid [0];
rhs[j][i][m] = /* ... */;

(a) Loads in control and access functions are invariant
(b) No aliasing/overlapping arrays 6

Assumption Generation

double rhs[JMAX][IMAX][5];

for (j = 0; j < grid [0] + 1; j++)

for (i = 0; i < grid [1] + 1; i++)
for (m = 0; m < 5; m++)

assume &rhs[j][i][m] >= &grid [2] ||
assume &rhs[j][i][m + 1] <= &grid [0];
rhs[j][i][m] = /* ... */;

(c) Expressions do not wrap
6

Assumption Generation

double rhs[JMAX][IMAX][5];

assume grid [0] != MAX_VALUE;
for (j = 0; j < grid [0] + 1; j++)
assume grid [1] != MAX_VALUE;
for (i = 0; i < grid [1] + 1; i++)

for (m = 0; m < 5; m++)

assume &rhs[j][i][m] >= &grid [2] ||
assume &rhs[j][i][m + 1] <= &grid [0];
rhs[j][i][m] = /* ... */;

(c) Expressions do not wrap
6

No Wrapping Assumptions

Given an expression e with m bits:

IW(e) = {(i) | JeKZ ̸= JeKZ 2m/Z}

Let e be textually part of statement S with domain IS.
IWS(e) = IW(e) ∩ IS

IWS(e) describes executed loop instances for which e will wrap.
¬ IWS(e) describes sufficient constrains under which e will not wrap.

(c) Expressions do not wrap
7

No Wrapping Assumptions

Given an expression e with m bits:

IW(e) = {(i) |

JeKZ

̸= JeKZ 2m/Z}

Let e be textually part of statement S with domain IS.
IWS(e) = IW(e) ∩ IS

IWS(e) describes executed loop instances for which e will wrap.
¬ IWS(e) describes sufficient constrains under which e will not wrap.

(c) Expressions do not wrap
7

No Wrapping Assumptions

Given an expression e with m bits:

IW(e) = {(i) |

JeKZ

̸=

JeKZ 2m/Z

}

Let e be textually part of statement S with domain IS.
IWS(e) = IW(e) ∩ IS

IWS(e) describes executed loop instances for which e will wrap.
¬ IWS(e) describes sufficient constrains under which e will not wrap.

(c) Expressions do not wrap
7

No Wrapping Assumptions

Given an expression e with m bits:

IW(e) = {(i) |

JeKZ ̸= JeKZ 2m/Z

}

Let e be textually part of statement S with domain IS.
IWS(e) = IW(e) ∩ IS

IWS(e) describes executed loop instances for which e will wrap.
¬ IWS(e) describes sufficient constrains under which e will not wrap.

(c) Expressions do not wrap
7

No Wrapping Assumptions

Given an expression e with m bits:
IW(e) = {(i) | JeKZ ̸= JeKZ 2m/Z}

Let e be textually part of statement S with domain IS.
IWS(e) = IW(e) ∩ IS

IWS(e) describes executed loop instances for which e will wrap.
¬ IWS(e) describes sufficient constrains under which e will not wrap.

(c) Expressions do not wrap
7

No Wrapping Assumptions

Given an expression e with m bits:
IW(e) = {(i) | JeKZ ̸= JeKZ 2m/Z}

Let e be textually part of statement S with domain IS.

IWS(e) = IW(e) ∩ IS

IWS(e) describes executed loop instances for which e will wrap.
¬ IWS(e) describes sufficient constrains under which e will not wrap.

(c) Expressions do not wrap
7

No Wrapping Assumptions

Given an expression e with m bits:
IW(e) = {(i) | JeKZ ̸= JeKZ 2m/Z}

Let e be textually part of statement S with domain IS.
IWS(e) = IW(e) ∩ IS

IWS(e) describes executed loop instances for which e will wrap.
¬ IWS(e) describes sufficient constrains under which e will not wrap.

(c) Expressions do not wrap
7

No Wrapping Assumptions

Given an expression e with m bits:
IW(e) = {(i) | JeKZ ̸= JeKZ 2m/Z}

Let e be textually part of statement S with domain IS.
IWS(e) = IW(e) ∩ IS

IWS(e) describes executed loop instances for which e will wrap.

¬ IWS(e) describes sufficient constrains under which e will not wrap.

(c) Expressions do not wrap
7

No Wrapping Assumptions

Given an expression e with m bits:
IW(e) = {(i) | JeKZ ̸= JeKZ 2m/Z}

Let e be textually part of statement S with domain IS.
IWS(e) = IW(e) ∩ IS

IWS(e) describes executed loop instances for which e will wrap.
¬ IWS(e) describes sufficient constrains under which e will not wrap.

(c) Expressions do not wrap
7

Assumption Generation

double rhs[JMAX][IMAX][5];

assume grid [0] != MAX_VALUE;
for (j = 0; j < grid [0] + 1; j++)
assume grid [1] != MAX_VALUE;
for (i = 0; i < grid [1] + 1; i++)

for (m = 0; m < 5; m++)

assume &rhs[j][i][m] >= &grid [2] ||
assume &rhs[j][i][m + 1] <= &grid [0];
rhs[j][i][m] = /* ... */;

(a) Loads in control and access functions are invariant
(b) No aliasing/overlapping arrays

8

Assumption Generation

double rhs[JMAX][IMAX][5];

assume grid [0] != MAX_VALUE;
for (j = 0; j < grid [0] + 1; j++)
assume grid [1] != MAX_VALUE;
for (i = 0; i < grid [1] + 1; i++)

for (m = 0; m < 5; m++)

assume &rhs[j][i][m] >= &grid [2] ||
assume &rhs[j][i][m + 1] <= &grid [0];
rhs[j][i][m] = /* ... */;

(d) Accesses stay in-bounds

8

Assumption Generation

double rhs[JMAX][IMAX][5];

assume grid [0] != MAX_VALUE;
for (j = 0; j < grid [0] + 1; j++)
assume grid [1] != MAX_VALUE;
for (i = 0; i < grid [1] + 1; i++)

for (m = 0; m < 5; m++)

assume &rhs[j][i][m] >= &grid [2] ||
assume &rhs[j][i][m + 1] <= &grid [0];
rhs[j][i][m] = /* ... */;

(d) Accesses stay in-bounds
8

Assumption Generation

double rhs[JMAX][IMAX][5];

assume grid [0] != MAX_VALUE;
for (j = 0; j < grid [0] + 1; j++)
assume grid [1] != MAX_VALUE;
for (i = 0; i < grid [1] + 1; i++)

for (m = 0; m < 5; m++)
assume j < JMAX && i < IMAX;
assume &rhs[j][i][m] >= &grid [2] ||
assume &rhs[j][i][m + 1] <= &grid [0];
rhs[j][i][m] = /* ... */;

(d) Accesses stay in-bounds
8

Assumption Hoisting

double rhs[JMAX][IMAX][5];

assume grid [0] != MAX_VALUE;
for (j = 0; j < grid [0] + 1; j++)
assume grid [1] != MAX_VALUE;
for (i = 0; i < grid [1] + 1; i++)

for (m = 0; m < 5; m++)
assume j < JMAX && i < IMAX;
assume &rhs[j][i][m] >= &grid [2] ||
assume &rhs[j][i][m + 1] <= &grid [0];
rhs[j][i][m] = /* ... */;

(a) Loads in control and access functions are invariant
(b) No aliasing/overlapping arrays

9

Assumption Hoisting

double rhs[JMAX][IMAX][5];

assume grid [0] != MAX_VALUE;
for (j = 0; j < grid [0] + 1; j++)
assume grid [1] != MAX_VALUE;
for (i = 0; i < grid [1] + 1; i++)

for (m = 0; m < 5; m++)
assume j < JMAX && i < IMAX;
assume &rhs[j][i][m] >= &grid [2] ||
assume &rhs[j][i][m + 1] <= &grid [0];
rhs[j][i][m] = /* ... */;

(a) Loads in control and access functions are invariant
(b) No aliasing/overlapping arrays

9

Assumption Hoisting

double rhs[JMAX][IMAX][5];

assume grid [0] != MAX_VALUE;
for (j = 0; j < grid [0] + 1; j++)
assume grid [1] != MAX_VALUE;
for (i = 0; i < grid [1] + 1; i++)

for (m = 0; m < 5; m++)
assume j < JMAX && i < IMAX;
assume &rhs[j][i][m] >= &grid [2] ||
assume &rhs[j][i][m + 1] <= &grid [0];
rhs[j][i][m] = /* ... */;

Hoist, Combine & Simplify Assumptions
9

Assumption Hoisting

double rhs[JMAX][IMAX][5];

assume grid [0] != MAX_VALUE;
for (j = 0; j < grid [0] + 1; j++)
assume grid [1] != MAX_VALUE;
for (i = 0; i < grid [1] + 1; i++)

for (m = 0; m < 5; m++)
assume j < JMAX && i < IMAX;
assume &rhs[j][i][m] >= &grid [2] ||
assume &rhs[j][i][m + 1] <= &grid [0];
rhs[j][i][m] = /* ... */;

Constraints: 0 ≤ j ≤ grid[0]
Assumption:

grid[0] < JMAX =⇒

j < JMAX

9

Assumption Hoisting

double rhs[JMAX][IMAX][5];

assume grid [0] != MAX_VALUE;
for (j = 0; j < grid [0] + 1; j++)
assume grid [1] != MAX_VALUE;
for (i = 0; i < grid [1] + 1; i++)

for (m = 0; m < 5; m++)
assume j < JMAX && i < IMAX;
assume &rhs[j][i][m] >= &grid [2] ||
assume &rhs[j][i][m + 1] <= &grid [0];
rhs[j][i][m] = /* ... */;

Constraints: 0 ≤ j ≤ grid[0]
Assumption:

grid[0] < JMAX =⇒

j < JMAX 9

Assumption Hoisting

double rhs[JMAX][IMAX][5];

assume grid [0] != MAX_VALUE;
for (j = 0; j < grid [0] + 1; j++)
assume grid [1] != MAX_VALUE;
for (i = 0; i < grid [1] + 1; i++)

for (m = 0; m < 5; m++)
assume j < JMAX && i < IMAX;
assume &rhs[j][i][m] >= &grid [2] ||
assume &rhs[j][i][m + 1] <= &grid [0];
rhs[j][i][m] = /* ... */;

Constraints: 0 ≤ j ≤ grid[0]
Assumption: grid[0] < JMAX =⇒ j < JMAX 9

Assumption Hoisting

Assumptions are Presburger Formulae

,

that can be
analyzed, combined and transformed.

Quantifier elimination is used to eliminate loop variables.

The result is a pre-condition of the original assumption.

9

Assumption Hoisting

Assumptions are Presburger Formulae

, that can be
analyzed, combined and transformed.

Quantifier elimination is used to eliminate loop variables.

The result is a pre-condition of the original assumption.

9

Assumption Hoisting

Assumptions are Presburger Formulae, that can be
analyzed, combined and transformed.

Quantifier elimination is used to eliminate loop variables.

The result is a pre-condition of the original assumption.

9

Assumption Hoisting

Assumptions are Presburger Formulae, that can be
analyzed, combined and transformed.

Quantifier elimination is used to eliminate loop variables.

The result is a pre-condition of the original assumption.

9

Assumption Hoisting

Assumptions are Presburger Formulae, that can be
analyzed, combined and transformed.

Quantifier elimination is used to eliminate loop variables.

The result is a pre-condition of the original assumption.

9

Assumption Hoisting

double rhs[JMAX][IMAX][5];

assume grid [0] != MAX_VALUE &&
assume grid [1] != MAX_VALUE &&
assume grid [0] + 1 <= JMAX &&
assume grid [1] + 1 <= IMAX &&
assume (&rhs [0][0][0] >= &grid [2] ||
assume &rhs[grid [0]][grid [1]][5] <= &grid [0]);

for (j = 0; j < grid [0] + 1; j++)
for (i = 0; i < grid [1] + 1; i++)

for (m = 0; m < 5; m++)
rhs[j][i][m] = /* ... */;

9

Assumption Simplification

10

Assumption Simplification

Eliminate Redundant Constraints:

assume N < 128 && N < 127;
=>
assume N < 127;

10

Assumption Simplification

Eliminate Redundant Constraints:

assume N < 128 && N < 127;
=>
assume N < 127;

Approximate Complicated Constraints:

assume &B[N + 2 − ((N − 1) % 3)] <= &A[0] ||
assume &A[N + 2 − ((N − 1) % 3)] <= &B[0];

10

Assumption Simplification

Eliminate Redundant Constraints:

assume N < 128 && N < 127;
=>
assume N < 127;

Approximate Complicated Constraints:

assume &B[N + 2 − ((N − 1) % 3)] <= &A[0] ||
assume &A[N + 2 − ((N − 1) % 3)] <= &B[0];
=>
assume &B[N + 2] <= &A[0] ||
assume &A[N + 2] <= &B[0];

10

Evaluation

Assumption Statistics

SPEC 2006 SPEC 2000
No Variant Loads Λ: 553 6

No Aliasing Λ: 132 52
No Wrapping Λ: 611 82

No Out-Of-Bounds Λ: 5 6
No Unbounded Loop Λ: 42 6

Total: 1343 152

After Simplification: < 671 (or < 50%) < 99 (or < 66%)

11

Assumption Statistics

SPEC 2006 SPEC 2000
No Variant Loads Λ: 553 6

No Aliasing Λ: 132 52
No Wrapping Λ: 611 82

No Out-Of-Bounds Λ: 5 6
No Unbounded Loop Λ: 42 6

Total: 1343 152
After Simplification: < 671 (or < 50%) < 99 (or < 66%)

11

Assumption Statistics

SPEC 2006 SPEC 2000
No Variant Loads Λ: 553 6

No Aliasing Λ: 132 52
No Wrapping Λ: 611 82

No Out-Of-Bounds Λ: 5 6
No Unbounded Loop Λ: 42 6

Total: 1343 152
After Simplification: < 671 (or < 50%) < 99 (or < 66%)

11

Two’s complement modeling
increased compile time by

3− 3000%.

Applicability & Validity

SPEC 2006
w/o Λssumptions w/ Λssumptions

modeled: 35 191 ×5.45
feasible: 35 102 ×2.91
executed: 61k 5.2M ×85.24

valid: 61k 99.68% ∗ 5.2M ×85.21

SPEC 2000
w/o Λssumptions w/ Λssumptions

modeled: 24 83 ×3.45
feasible: 24 78 ×3.25
executed: 11k 729k ×66.27

valid: 11k 89.3% ∗ 729k ×59.18 12

Applicability & Validity

SPEC 2006
w/o Λssumptions w/ Λssumptions

modeled: 35 191 ×5.45
feasible: 35 102 ×2.91
executed: 61k 5.2M ×85.24

valid: 61k 99.68% ∗ 5.2M ×85.21

SPEC 2000
w/o Λssumptions w/ Λssumptions

modeled: 24 83 ×3.45
feasible: 24 78 ×3.25
executed: 11k 729k ×66.27

valid: 11k 89.3% ∗ 729k ×59.18 12

Assumptions fail
≈ 2%

of the time and cause
< 4%

runtime overhead.

Conclusion

Architecture Overview

Thank You.

13

Architecture Overview

Thank You.

13

Architecture Overview

Thank You.

13

Architecture Overview

Thank You.

13

Architecture Overview

Thank You.

13

Architecture Overview

Thank You.

13

Architecture Overview

Thank You.
13

Backup

Finite Loop Assumption

Infinite loops create unbounded optimization problems

Finite Loop Assumption

Infinite loops create unbounded optimization problems

for (unsigned i = 0; i != N; i+=2)
A[i+4] = A[i];

Finite Loop Assumption

Infinite loops create unbounded optimization problems

if (N % 2 == 0) {

for (unsigned i = 0; i != N; i+=2)
A[i+4] = A[i];

} else {
/* original code */

}

Invariant Load Assumptions

for (i = 0; i < *Size1; i++)
for (j = 0; j < *Size0; j++)

...

Hoist invariant loads but keep control conditions intact.
Powerful in combination with runtime alias checks.

Invariant Load Assumptions

auto Size0V , Size1V = *Size1;

if (Size1V > 0)
Size0V = *Size0;

for (i = 0; i < Size1V; i++)
for (j = 0; j < Size0V; j++)

...

Hoist invariant loads but keep control conditions intact.

Powerful in combination with runtime alias checks.

Invariant Load Assumptions

auto Size0V , Size1V = *Size1;

if (Size1V > 0)
Size0V = *Size0;

for (i = 0; i < Size1V; i++)
for (j = 0; j < Size0V; j++)

...

Hoist invariant loads but keep control conditions intact.
Powerful in combination with runtime alias checks.

Assumption Simplification

Simplify Complicated Constraints:
assume &B[N + 2 − ((N − 1) % 3)] <= &A[0] ||
assume &A[N + 2 − ((N − 1) % 3)] <= &B[0];

assume &B[N + 2] <= &A[0] ||
assume &A[N + 2] <= &B[0];

for (i = 0; i < N; i += 3) {
A[i + 0] += 1.3 * B[i + 0];
A[i + 1] += 1.7 * B[i + 1];
A[i + 2] += 2.1 * B[i + 2];

}

Sound & Automatic Polyhedral Optimization

Polyhedral optimizations show great performance improvements,

though they often require manual pre-processing
and are unsound for corner case inputs.

SPEC 2006 – 456.hmmer – P7_Viterbi
−28% execution time

NAS Parallel Benchmark Suite – BT – compute_rhs
6× fold speedup with 8 threads [Metha and Yew, PLDI’15]

Sound & Automatic Polyhedral Optimization

Polyhedral optimizations show great performance improvements,
though they often require manual pre-processing
and are unsound for corner case inputs.

SPEC 2006 – 456.hmmer – P7_Viterbi
−28% execution time

NAS Parallel Benchmark Suite – BT – compute_rhs
6× fold speedup with 8 threads [Metha and Yew, PLDI’15]

Sound & Automatic Polyhedral Optimization

Polyhedral optimizations show great performance improvements,
though they often require manual pre-processing
and are unsound for corner case inputs.

SPEC 2006 – 456.hmmer – P7_Viterbi
−28% execution time

NAS Parallel Benchmark Suite – BT – compute_rhs
6× fold speedup with 8 threads [Metha and Yew, PLDI’15]

Semantic Differences

Rust Java C LLVM-IR Polyhedral
Model

Variant Loads in Control Conditions
3 3 3 3 7

Aliasing Arrays
7 7 3 3 7

Integer Wrapping
3 3 3 3 7

Out-of-Bound Accesses
3 3 3 3 7

Potentially Unbounded Loops
3 3 3 3 7

	Motivating Example
	Problem Statement
	Solution
	Real World Example
	Evaluation
	Conclusion
	Appendix
	Backup

