Optimistic Loop Optimization

CGO 2017 - February 8th - Austin, TX

Johannes Doerfert and Sebastian Hack
Compiler Design Lab
Saarland University
http://compilers.cs.uni-saarland.de

SIC
Saarland
Informatics Campus

Tobias Grosser

Department of Computer Science

ETH Zürich

https://spcl.inf.ethz.ch

Motivating Example

```
for (i = 0; i < N; i++)
    A[i] = A[N + i];
```


A Potentially Parallel Loop

$$
\begin{aligned}
\text { for }(i & =0 ; i<N ; i++) \\
A[i] & =A[N+i] ;
\end{aligned}
$$

Read Set (R)
$\{\mathrm{A}[\mathrm{N}+\mathrm{i}] \mid 0 \leq \mathrm{i}<\mathrm{N}\}$

Write Set (W)
\{ $A[i] \mid 0 \leq i<N\}$

A Potentially Parallel Loop

$$
\begin{aligned}
& \text { for (i }=0 ; i<N ; i++) \\
& \qquad \begin{aligned}
& A[i]=A[N+i] ; \\
& \text { Read Set (R) } \\
&\{A[N+i] \mid 0 \leq i<N\} \text { Write Set (W) } \\
&\{A[i] \mid 0 \leq i<N\} \\
& R \cap W=\{ \}
\end{aligned}
\end{aligned}
$$

A Potentially Parallel Loop

$$
\begin{aligned}
& \text { for (i = 0; i }<\mathrm{N} \text {; i++) } \\
& A[i]=A[N+i] ; \\
& \text { Read Set (R) } \\
& \{\mathrm{A}[\mathrm{~N}+\mathrm{i}] \mid 0 \leq \mathrm{i}<\mathrm{N}\} \\
& \text { Write Set (w) } \\
& \text { \{ } A[i] \mid 0 \leq i<N\}
\end{aligned}
$$

A Potentially Parallel Loop

```
unsigned char i, N;
for (i = 0; i < N; i++)
    A[i] = A[N + i];
```

Read Set (R)
$\{\mathrm{A}[\mathrm{N}+\mathrm{i}] \mid 0 \leq \mathrm{i}<\mathrm{N}\}$

Write Set (W)
\{ $A[i] \mid 0 \leq i<N\}$

A Potentially Parallel Loop

```
unsigned char i, N;
for (i = 0; i < N; i++)
    A[i] = A[N + i];
```

Read Set (R)

Write Set (W)
\{ A[i] | $0 \leq i<N\}$

A Potentially Parallel Loop

```
unsigned char i, N;
for (i = 0; i < N; i++)
    A[i] = A[N + i];
```

Read Set (R)

\{ $A[(N+i) \bmod 256] \mid \ldots\}$

Write Set (W)
\{ A[i] | $0 \leq i<N\}$

A Potentially Parallel Loop

```
unsigned char i, N;
for (i = 0; i < N; i++)
    A[i] = A[N + i];
```

Read Set (R)

Write Set (W)
\{ $A[i] \mid 0 \leq i<N\}$
$\{A[(N+i) \bmod 256] \mid \ldots\}$

$$
R \cap W=\{ \}, \text { iff } N<=128
$$

A Potentially Parallel Loop

```
unsigned char i, N;
for (i = 0; i < N; i++)
    A[i] = A[N + i];
```

Read Set (R)

Write Set (W)
\{ A[i] | $0 \leq i<N\}$
\{ $A[(N+i) \bmod 256] \mid \ldots\}$

$$
R \cap W=\{ \}, \text { iff } N<=128
$$

Potentially Sequential

Problem Statement

Problem Statement

Required:
 Program abstractions that capture all possible semantics

Problem Statement

Required:
Program abstractions that capture all possible semantics
Reality:
Corner cases are often missed or assumed not to happen

Problem Statement

Required:

Program abstractions that capture all possible semantics

Reality:

Corner cases are often missed or assumed not to happen

Consequence:
Poor applicability and miscompilations for certain inputs

Problem Statement

Required:

Program abstractions that capture all possible semantics

Reality:

Corner cases are often missed or assumed not to happen

Consequence:
Poor applicability and miscompilations for certain inputs

Solution:

Take optimistic assumptions statically that are verified dynamically

Solution

Optimistic Loop Optimization

Optimistic Loop Optimization

/* loop nest */

OPTIMISTIC LOOP OPTIMIZATION

1. Take Optimistic Assumptions to model the loop nest
/* loop nest */

OPTIMISTIC LOOP OPTIMIZATION

1. Take Optimistic Assumptions to model the loop nest
2. Optimize the loop nest
```
/* optimized loop nest */
/* loop nest */
```


OPTIMISTIC LOOP OPTIMIZATION

1. Take Optimistic Assumptions to model the loop nest
2. Optimize the loop nest
3. Version the code
```
if ( )
    /* optimized loop nest */
else
    /* loop nest */
```


Optimistic Loop Optimization

1. Take Optimistic Assumptions to model the loop nest
2. Optimize the loop nest
3. Version the code
4. Create a simple runtime check
```
if (/* simple runtime check */)
    /* optimized loop nest */
else
    /* loop nest */
```


SEMANTIC DIFFERENCES

Semantic Differences

C	LLVM-IR	Polyhedral Model
Variant Loads in Control Conditions		\boldsymbol{X}

Semantic Differences

Semantic Differences

Semantic Differences

Semantic Differences

Real World Example

Real World Example

NAS Parallel Benchmark Suite - BT - compute_rhs

- 66 loops, nested up to depth 4
- 38 array writes, 294 array reads
- 45 reads in loop bounds

Real World EXample

double rhs[JMAX][IMAX][5];

$$
\begin{aligned}
& \text { for }(j=0 ; j<\operatorname{grid}[0]+1 ; j++) \\
& \text { for }(i=0 ; i<\operatorname{grid}[1]+1 ; i++) \\
& \text { for }(m=0 ; m<5 ; m++)
\end{aligned}
$$

rhs[j][i][m] = /* ... */;

Assumption Generation

double rhs[JMAX][IMAX][5];

$$
\begin{aligned}
& \text { for }(j=0 ; j<\operatorname{grid}[0]+1 ; j++) \\
& \text { for }(i=0 ; i<\operatorname{grid}[1]+1 ; i++) \\
& \quad \text { for }(m=0 ; m<5 ; m++)
\end{aligned}
$$

$$
\text { rhs[j][i][m] }=/ * \ldots * / ;
$$

(a) Loads in control and access functions are invariant

Assumption Generation

double rhs[JMAX][IMAX][5];
for ($\mathrm{j}=0 ; \mathrm{j}<\operatorname{grid}[0]+1$; $\mathrm{j}++$)

$$
\begin{aligned}
& \text { for }(i=0 ; i<\operatorname{grid}[1]+1 ; i++) \\
& \text { for }(m=0 ; m<5 ; m++)
\end{aligned}
$$

$$
\text { rhs[j][i][m] }=/ * \ldots * / ;
$$

(a) Loads in control and access functions are invariant (b) No aliasing/overlapping arrays

Assumption Generation

double rhs[JMAX][IMAX][5];

$$
\text { for }(j=0 ; j<\operatorname{grid}[0]+1 ; j++)
$$

$$
\begin{aligned}
& \text { for }(i=0 ; i<\operatorname{grid}[1]+1 ; i++) \\
& \text { for }(m=0 ; m<5 ; m++)
\end{aligned}
$$

```
assume &rhs[j][i][m] >= &grid[2] ||
        &rhs[j][i][m + 1] <= &grid[0];
    rhs[j][i][m] = /* ... */;
```

(a) Loads in control and access functions are invariant (b) No aliasing/overlapping arrays

Assumption Generation

double rhs[JMAX][IMAX][5];

$$
\begin{aligned}
& \text { for }(j=0 ; j<\operatorname{grid}[0]+1 ; j++) \\
& \text { for }(i=0 ; i<\operatorname{grid}[1]+1 ; i++) \\
& \text { for }(m=0 ; m<5 ; m++) \\
& \text { assume \&rhs[j][i][m]>= \&grid[2] || } \\
& \quad \& r h s[j][i][m+1]<=\& g r i d[0] ; \\
& \quad \operatorname{rhs}[j][i][m]=/ * \ldots * / ;
\end{aligned}
$$

(c) Expressions do not wrap

Assumption Generation

```
double rhs[JMAX][IMAX][5];
assume grid[0] != MAX_VALUE;
for (j = 0; j < grid[0] + 1; j++)
    assume grid[1] != MAX_VALUE;
    for (i = 0; i < grid[1] + 1; i++)
        for (m = 0; m < 5; m++)
            assume &rhs[j][i][m] >= &grid[2] ||
        &rhs[j][i][m + 1] <= &grid[0];
        rhs[j][i][m] = /* ... */;
```

(c) Expressions do not wrap

Given an expression e with m bits:
(c) Expressions do not wrap

No Wrapping Assumptions

Given an expression e with m bits:

$$
\llbracket e \rrbracket_{z}
$$

(c) Expressions do not wrap

No Wrapping Assumptions

Given an expression e with m bits:

$$
\llbracket \mathrm{e} \rrbracket_{z} \quad \llbracket \mathrm{e} \rrbracket_{\mathbb{Z}_{2^{n}} / \mathbb{Z}}
$$

(c) Expressions do not wrap

No Wrapping Assumptions

Given an expression e with m bits:

$$
\llbracket \mathbb{e} \rrbracket_{z} \neq \llbracket \mathbb{e} \rrbracket_{\mathbb{Z}_{2 n} / \mathbb{Z}}
$$

(c) Expressions do not wrap

No Wrapping Assumptions

Given an expression e with m bits:

$$
\mathcal{I}_{W}(\mathrm{e})=\left\{(\underline{i}) \mid \llbracket \mathrm{e} \rrbracket_{\mathbb{Z}} \neq \llbracket \mathrm{e} \rrbracket_{\mathbb{Z}_{2^{m} / \mathbb{Z}}}\right\}
$$

(c) Expressions do not wrap

No Wrapping Assumptions

Given an expression e with m bits:

$$
\mathcal{I}_{W}(\mathrm{e})=\left\{(\underline{i}) \mid \llbracket \mathrm{e} \rrbracket_{\mathbb{Z}} \neq \llbracket \mathrm{e} \rrbracket_{\mathbb{Z}_{2^{m} / \mathbb{Z}}}\right\}
$$

Let e be textually part of statement S with domain \mathcal{I}_{S}.
(c) Expressions do not wrap

No Wrapping Assumptions

Given an expression e with m bits:

$$
\mathcal{I}_{W}(\mathrm{e})=\left\{(\underline{i}) \mid \llbracket \mathrm{e} \rrbracket_{\mathbb{Z}} \neq \llbracket \mathrm{e} \rrbracket_{\mathbb{Z}_{2^{m} / \mathbb{Z}}}\right\}
$$

Let e be textually part of statement S with domain $\mathcal{I}_{\text {S }}$.

$$
\mathcal{I}_{W_{\mathrm{S}}}(\mathrm{e})=\mathcal{I}_{W}(\mathrm{e}) \cap \mathcal{I}_{\mathrm{S}}
$$

(c) Expressions do not wrap

No Wrapping Assumptions

Given an expression e with m bits:

$$
\mathcal{I}_{W}(\mathrm{e})=\left\{(\underline{i}) \mid \llbracket \mathrm{e} \rrbracket_{\mathbb{Z}} \neq \llbracket \mathrm{e} \rrbracket_{\mathbb{Z}_{2^{m} / \mathbb{Z}}}\right\}
$$

Let e be textually part of statement S with domain \mathcal{I}_{S}.

$$
\mathcal{I}_{W_{\mathrm{S}}}(\mathrm{e})=\mathcal{I}_{W}(\mathrm{e}) \cap \mathcal{I}_{\mathrm{S}}
$$

$\mathcal{I}_{w_{s}}(\mathrm{e})$ describes executed loop instances for which e will wrap.
(c) Expressions do not wrap

No Wrapping Assumptions

Given an expression e with m bits:

$$
\mathcal{I}_{W}(\mathrm{e})=\left\{(\underline{i}) \mid \llbracket \mathrm{e} \rrbracket_{\mathbb{Z}} \neq \llbracket \mathrm{e} \rrbracket_{\mathbb{Z}_{2^{m} / \mathbb{Z}}}\right\}
$$

Let e be textually part of statement S with domain \mathcal{I}_{S}.

$$
\mathcal{I}_{W_{\mathrm{S}}}(\mathrm{e})=\mathcal{I}_{W}(\mathrm{e}) \cap \mathcal{I}_{\mathrm{S}}
$$

$\mathcal{I}_{w_{s}}(\mathrm{e})$ describes executed loop instances for which e will wrap.
$\neg \mathcal{I}_{w_{s}}(\mathrm{e})$ describes sufficient constrains under which e will not wrap.
(c) Expressions do not wrap

Assumption Generation

double rhs[JMAX][IMAX][5];

```
assume grid[0] != MAX_VALUE;
for (j = 0; j < grid[0] + 1; j++)
    assume grid[1] != MAX_VALUE;
    for (i = 0; i < grid[1] + 1; i++)
        for (m = 0; m < 5; m++)
```

 assume \&rhs[j][i][m] >= \&grid[2] ||
 \&rhs[j][i][m + 1] <= \&grid[0];
 rhs[j][i][m] = /* ... */;

Assumption Generation

double rhs[JMAX][IMAX][5];

```
assume grid[0] != MAX_VALUE;
for (j = 0; j < grid[0] + 1; j++)
    assume grid[1] != MAX_VALUE;
    for (i = 0; i < grid[1] + 1; i++)
        for (m = 0; m < 5; m++)
```

 assume \&rhs[j][i][m] >= \&grid[2] ||
 \&rhs[j][i][m + 1] <= \&grid[0];
 rhs[j][i][m] = /* ... */;

Assumption Generation

double rhs[JMAX][IMAX][5];

```
assume grid[0] != MAX_VALUE;
for (j = 0; j < grid[0] + 1; j++)
    assume grid[1] != MAX_VALUE;
    for (i = 0; i < grid[1] + 1; i++)
        for (m = 0; m < 5; m++)
```

 assume \&rhs[j][i][m] >= \&grid[2] ||
 \&rhs[j][i][m + 1] <= \&grid[0];
 rhs[j][i][m] = /* ... */;
(d) Accesses stay in-bounds

Assumption Generation

double rhs[JMAX][IMAX][5];

```
assume grid[0] != MAX_VALUE;
for (j = 0; j < grid[0] + 1; j++)
    assume grid[1] != MAX_VALUE;
    for (i = 0; i < grid[1] + 1; i++)
        for (m = 0; m < 5; m++)
        assume j < JMAX && i < IMAX;
        assume &rhs[j][i][m] >= &grid[2] ||
        &rhs[j][i][m + 1] <= &grid[0];
        rhs[j][i][m] = /* ... */;
```

(d) Accesses stay in-bounds

Assumption Hoisting

double rhs[JMAX][IMAX][5];

```
assume grid[0] != MAX_VALUE;
for (j = 0; j < grid[0] + 1; j++)
    assume grid[1] != MAX_VALUE;
    for (i = 0; i < grid[1] + 1; i++)
        for (m = 0; m < 5; m++)
        assume j < JMAX && i < IMAX;
        assume &rhs[j][i][m] >= &grid[2] ||
        &rhs[j][i][m + 1] <= &grid[0];
        rhs[j][i][m] = /* ... */;
```


Assumption Hoisting

double rhs[JMAX][IMAX][5];

```
assume grid[0] != MAX_VALUE;
for (j = 0; j < grid[0] + 1; j++)
    assume grid[1] != MAX_VALUE;
    for (i = 0; i < grid[1] + 1; i++)
        for (m = 0; m < 5; m++)
        assume j < JMAX && i < IMAX;
        assume &rhs[j][i][m] >= &grid[2] ||
        &rhs[j][i][m + 1] <= &grid[0];
        rhs[j][i][m] = /* ... */;
```


Assumption Hoisting

double rhs[JMAX][IMAX][5];

```
assume grid[0] != MAX_VALUE;
for (j = 0; j < grid[0] + 1; j++)
    assume grid[1] != MAX_VALUE;
    for (i = 0; i < grid[1] + 1; i++)
        for (m = 0; m < 5; m++)
        assume j < JMAX && i < IMAX;
        assume &rhs[j][i][m] >= &grid[2] ||
        &rhs[j][i][m + 1] <= &grid[0];
        rhs[j][i][m] = /* ... */;
```

Hoist, Combine \& Simplify Assumptions

Assumption Hoisting

double rhs[JMAX][IMAX][5];

```
assume grid[0] != MAX_VALUE;
for (j = 0; j < grid[0] + 1; j++)
    assume grid[1] != MAX_VALUE;
    for (i = 0; i < grid[1] + 1; i++)
        for (m = 0; m < 5; m++)
        assume j < JMAX && i < IMAX;
        assume &rhs[j][i][m] >= &grid[2] ||
        &rhs[j][i][m + 1] <= &grid[0];
        rhs[j][i][m] = /* ... */;
```


Assumption Hoisting

double rhs[JMAX][IMAX][5];

```
assume grid[0] != MAX_VALUE;
for (j = 0; j < grid[0] + 1; j++)
    assume grid[1] != MAX_VALUE;
    for (i = 0; i < grid[1] + 1; i++)
        for (m = 0; m < 5; m++)
        assume j < JMAX && i < IMAX;
        assume &rhs[j][i][m] >= &grid[2] ||
        &rhs[j][i][m + 1] <= &grid[0];
        rhs[j][i][m] = /* ... */;
```

Constraints: $0 \leq j \leq \operatorname{grid}[0]$ Assumption:

Assumption Hoisting

double rhs[JMAX][IMAX][5];

```
assume grid[0] != MAX_VALUE;
for (j = 0; j < grid[0] + 1; j++)
    assume grid[1] != MAX_VALUE;
    for (i = 0; i < grid[1] + 1; i++)
        for (m = 0; m < 5; m++)
        assume j < JMAX && i < IMAX;
        assume &rhs[j][i][m] >= &grid[2] ||
        &rhs[j][i][m + 1] <= &grid[0];
        rhs[j][i][m] = /* ... */;
```

Constraints: $0 \leq j \leq \operatorname{grid}[0]$
Assumption: grid[0] < JMAX $\Longrightarrow j<J M A X$

AsSUMPTION HOISTING

AsSUMPTION HOISTING

Assumptions are Presburger Formulae

Assumption Hoisting

Assumptions are Presburger Formulae, that can be analyzed, combined and transformed.

AsSUMPTION HOISTING

Assumptions are Presburger Formulae, that can be analyzed, combined and transformed.

Quantifier elimination is used to eliminate loop variables.

Assumption Hoisting

Assumptions are Presburger Formulae, that can be analyzed, combined and transformed.

Quantifier elimination is used to eliminate loop variables.

The result is a pre-condition of the original assumption.

Assumption Hoisting

double rhs[JMAX][IMAX][5];

```
assume grid[0] != MAX_VALUE &&
grid[1] != MAX_VALUE &&
grid[0] + 1 <= JMAX &&
grid[1] + 1 <= IMAX &&
(&rhs[0][0][0] >= &grid[2] ||
    &rhs[grid[0]][grid[1]][5] <= &grid[0]);
```

for (j = 0; j < grid[0] + 1; j++)
for ($\mathrm{i}=0 ; \mathrm{i}<\operatorname{grid[1]}+1 ; \mathrm{i}++$)
for ($m=0 ; m<5 ; m++$)
rhs[j][i][m] = /* ... */;

ASSUMPTION SIMPLIFICATION

AsSumption Simplification

```
Eliminate Redundant Constraints:
assume N < 128 && N < 127;
=>
assume N < 127;
```


AsSumption Simplification

```
Eliminate Redundant Constraints:
assume N < 128 && N < 127;
=>
assume N < 127;
Approximate Complicated Constraints:
assume &B[N + 2 - ((N - 1) % 3)] <= &A[0] ||
    &A[N + 2 - ((N - 1) % 3)] <= &B[0];
```


AsSumption Simplification

```
Eliminate Redundant Constraints:
assume N < 128 && N < 127;
=>
assume N < 127;
Approximate Complicated Constraints:
```

```
assume &B[N + 2 - ((N - 1) % 3)] <= &A[0] ||
```

assume \&B[N + 2 - ((N - 1) % 3)] <= \&A[0] ||
\&A[N + 2 - ((N - 1) % 3)] <= \&B[0];
\&A[N + 2 - ((N - 1) % 3)] <= \&B[0];
=>
assume \&B[N + 2] <= \&A[0] ||
\&A[N + 2] <= \&B[0];

```

\section*{Evaluation}

\section*{Assumption Statistics}
\begin{tabular}{rrr} 
& SPEC 2006 & SPEC 2000 \\
\cline { 2 - 3 } No Variant Loads ^: & 553 & 6 \\
No Aliasing ^: & 132 & 52 \\
No Wrapping ^: & 611 & 82 \\
No Out-Of-Bounds ^: & 5 & 6 \\
No Unbounded Loop ^: & 42 & 6 \\
Total: & 1343 & 152
\end{tabular}

\section*{ASSUMPTION STATISTICS}
\begin{tabular}{rrr} 
& SPEC 2006 & SPEC 2000 \\
No Variant Loads \(\Lambda:\) & 553 & 6 \\
No Aliasing \(\wedge:\) & 132 & 52 \\
No Wrapping \(\wedge:\) & 611 & 82 \\
No Out-Of-Bounds \(\Lambda:\) & 5 & 6 \\
No Unbounded Loop \(\wedge:\) & 42 & 6 \\
Total: & 1343 & 152 \\
After Simplification: & \(<671(\) or \(<50 \%)\) & \(<99(\) or \(<66 \%)\)
\end{tabular}

\section*{AsSumption Statistics}


\section*{APPLICABILITY \& VALIDITY}

\section*{SPEC 2006}
\(\begin{array}{rr|r|r} & \text { w/o ^ssumptions } & \text { w/ ^ssumptions } & \\\)\cline { 2 - 4 } \text { modeled: } & 35 & 191 & \(\left.\times 5.45 \\ \text { feasible: } & 35 & 102 & \times 2.91 \\ \text { executed: } & 61 \mathrm{k} & 5.2 \mathrm{M} & \times 85.24 \\ \text { valid: } & 61 \mathrm{k} & & 99.68 \% * 5.2 \mathrm{M}\end{array}\right) \times 85.21\)

\section*{SPEC 2000}
\(\begin{array}{rr|r|r} & \text { w/o ^ssumptions } & \text { w/ Mssumptions } & \\\)\cline { 2 - 4 } & 24 & 83 & \(\left.\times 3.45 \\ \text { feasible: } & 24 & 78 & \times 3.25 \\ \text { executed: } & 11 \mathrm{k} & 729 \mathrm{k} & \times 66.27 \\ \text { valid: } & 11 \mathrm{k} & & 89.3 \% * 729 \mathrm{k}\end{array}\right) \times 59.18\)

SPEC 2006
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{5}{*}{modeled: feasible executed valid:} & w/o ^ssumptions & / ^ssumptions & \\
\hline & \multirow[t]{2}{*}{Assumptions fail} & 191 & \(\times 5.45\) \\
\hline & & 102 & \(\times 2.91\) \\
\hline & \(\approx 2 \%\) & 5.2 M & \(\times 85.24\) \\
\hline & \multicolumn{2}{|l|}{of the time and cause} & \(\times 85.21\) \\
\hline & & & \\
\hline & runtime & tions & \\
\hline modeled: & 24 & 83 & \(\times 3.45\) \\
\hline feasible: & 24 & 78 & \(\times 3.25\) \\
\hline executed: & 11k & 729k & \(\times 66.27\) \\
\hline valid: & 11k & 89.3\% * 729k & \(\times 59.18\) \\
\hline
\end{tabular}

\section*{Conclusion}

\section*{Architecture Overview}


\section*{Architecture Overview}


\section*{Architecture Overview}


\section*{Architecture Overview}


\section*{Architecture Overview}


\section*{Architecture Overview}


\section*{Thank You.}

Backup

Infinite loops create unbounded optimization problems

\section*{Finite Loop Assumption}

Infinite loops create unbounded optimization problems
\[
\begin{aligned}
& \text { for (unsigned } i=0 ; i \quad!=N ; i+=2) \\
& \qquad A[i+4]=A[i] ;
\end{aligned}
\]

\section*{Finite Loop Assumption}

Infinite loops create unbounded optimization problems
```

if (N % 2 == 0) {
for (unsigned i = 0; i != N; i+=2)
A[i+4] = A[i];
} else {
/* original code */
}

```

\section*{InVARIANT LOAD Assumptions}
```

for (i = 0; i < *Size1; i++)
for (j = 0; j < *Size0; j++)

```
...

\section*{Invariant Load Assumptions}
```

auto Size0V, Size1V = *Size1;
if (Size1V > 0)
Size0V = *Size0;
for (i = 0; i < Size1V; i++)
for (j = 0; j < Size0V; j++)

```

Hoist invariant loads but keep control conditions intact.

\section*{Invariant Load Assumptions}
```

auto Size0V, Size1V = *Size1;
if (Size1V > 0)
Size0V = *Size0;
for (i = 0; i < Size1V; i++)
for (j = 0; j < Size0V; j++)
Hoist invariant loads but keep control conditions intact. Powerful in combination with runtime alias checks.

```

\section*{Assumption Simplification}

Simplify Complicated Constraints:
```

assume \&B[N + 2 - ((N - 1) % 3)] <= \&A[0] ||
\&A[N + 2 - ((N - 1) % 3)] <= \&B[0];

```
```

assume \&B[N + 2] <= \&A[0] ||
\&A[N + 2] <= \&B[0];

```
```

for (i = 0; i < N; i += 3) {
A[i + 0] += 1.3 * B[i + 0];
A[i + 1] += 1.7 * B[i + 1];
A[i + 2] += 2.1 * B[i + 2];
}

```

\section*{SOUND \& AUTOMATIC POLYHEDRAL OPTIMIZATION}

Polyhedral optimizations show great performance improvements,

\section*{Sound \& Automatic Polyhedral Optimization}

Polyhedral optimizations show great performance improvements, though they often require manual pre-processing and are unsound for corner case inputs.

\section*{Sound \& Automatic Polyhedral Optimization}

Polyhedral optimizations show great performance improvements, though they often require manual pre-processing and are unsound for corner case inputs.

SPEC 2006-456.hmmer - P7_Viterbi
\(-28 \%\) execution time

NAS Parallel Benchmark Suite - BT - compute_rhs
\(6 \times\) fold speedup with 8 threads [Metha and Yew, PLDI'15]

\section*{Semantic Differences}
\begin{tabular}{cccc} 
Rust Java C & LLVM-IR & \begin{tabular}{c} 
Polyhedral \\
Model
\end{tabular}
\end{tabular}
```

